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“Straightforward” LP Models Formulation

Everything in life is not linear and continuous! But an enormous variety
of applications can be modeled validly as LPs:

Allocation Models

Blending Models

Operations Planning

Operations Scheduling

For additional examples, see Rardin (1998), Chapter 4
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Allocation Models

The main issue in allocation models is to divide or allocate a valuable
resource among competing needs.

The resource may be land, capital, time, fuel, or anything else of
limited availability

Principal decision variables in allocation models specify how much of
the critical resource is allocated to each use

Example:

The Ontario Forest Service must trade-off timber, grazing, recreational,
environmental, regional preservation and other demands on forestland.

The optimization seeks the best possible allocation of land to particular
prescriptions (e.g., in terms of the net present value), subject to forest-
wide restrictions on land use.

xi ,j
∆
= number of acres in area i managed by prescription j
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Blending Models

The main issue in blending models is to decide what mix of ingredients
best fulfills specified output requirements.

The blend can be from chemicals, diets, metals, animal foods, etc.

Principal decision variables in blending models specify how much of
the available ingredients to include in the mix

Composition constraints typically enforce lower and/or upper limits on
the properties of the blend

Example: Gasoline Blending Process

Maximize: Profit

Subject to: Product Flow = •

• ≤ Octane No. ≤ •

• ≤ RVP ≤ •

• ≤ Rel. Vol. ≤ •

• ≤ Component Flows ≤ •

FC

FC

FC

FC

FC

Reformate

LSR Naphta

n−Butane

Alkylate

FCC Gas

AT

FT

Final Blend

Benôıt Chachuat (McMaster University) LP: Model Formulation 4G03 5 / 25

Operations Planning Models
The main issue in operations planning models is to help a decision maker
decide what to do and where to do it.

The decision making can be in manufacturing, distribution,
government, volunteer, etc.

Principal decision variables in operations planning always resolve
around what operations to undertake — recall that, to gain
tractability, decision variables of relatively large magnitude are best
modeled as continuous

Balance constraints assure that in-flows equal or exceed out-flows for
materials and products created by one stage of production and
consumed by others

Example: Which amounts of Feed 1 and Feed 2 should we use?

Feed 1

Feed 2

Product 1

Product 2

Product 3
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Operations Planning Models

Class Exercise: What is the Optimization Model?

Prod. 1 Prod. 2 Prod. 3 Feed Min. Feed Max. Feed Cost

Feed 1 0.7 0.2 0.1 0 1000 5
Feed 2 0.2 0.2 0.6 0 1000 6
Prod. Min. 0 0 0
Prod. Max. 100 70 90
Prod. Value 10 11 12

max [10P1 + 11P2 + 12P3] − [5F1 + 6F2]

s.t. P1 = 0.7F1 + 0.2F2

P2 = 0.2F1 + 0.2F2

P2 = 0.1F1 + 0.6F2

0 ≤ P1 ≤ 100

0 ≤ P2 ≤ 70

0 ≤ P3 ≤ 90

0 ≤ F1, F2 ≤ 1000

Are there important issues not
included?
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Operations Scheduling Models

In operations scheduling models, the work is already fixed and the
resources must be planned for meeting varying-time demands.

Principal decision variables in operations scheduling are time-phased
— time is an index and decisions may be repeated in each time
period

◮ Number of ball-bearings produced during period t
◮ Inventory level at the beginning of period t
◮ Number of employees beginning a shift at time t

Scheduling models typically link decisions in successive time periods
with balance constraints of the form:





starting
level in
period t



 +





impacts of
period t

decisions



 =





starting
level in

period t + 1





Covering constraints assure that the requirements over each time
periods are met
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Operations Scheduling Models

Example: Raw material deliveries are now periodic: We must decide when
and how much raw materials to purchase in order to maximize profit while
satisfying the demand

Factory
Intermediate

Storage

DemandWarehouse

Transportation

Periodic
Deliveries

Feed 1
Feed 2

Product 1

Product 1

Product 2

Product 2

Product 3

Product 3

The model must consider the inventories in tanks, factory, warehouses

Delays in transportation can be important

What type of balances are needed?

Benôıt Chachuat (McMaster University) LP: Model Formulation 4G03 9 / 25

“Straightforward” Models for LP

Fundamental Balances:

Material: ball bearings, fluid, people, etc.

Energy: vehicle travel, processing, etc.

Space: volume, area

Lumped quantity: pollution, economic activity, etc.

Time: utilization of equipment, people work, etc.

Only retain key decisions as variables:

Production rates

Flows

Investment

Inventories

Combine other factors in parameters (constants)

Benôıt Chachuat (McMaster University) LP: Model Formulation 4G03 10 / 25

Formulating “Straightforward” Models for LP

Example: Flow Splitting

F1

F2

F3

Feed and product mole fractions α1, . . . , αn

Material Balance:

F1 = F2 + F3

Feed and product composition (mole fractions) cannot change —
Why?
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Formulating “Straightforward” Models for LP

Example: Perfect Separator

F1

α1, . . . , αn

}

{

F2

α1, . . . , αm

{

F3

αm+1, . . . , αn

Material Balance:

F1 = F2 + F3

Component Balance:

F1

m
∑

k=1

αm = F2

◮ Can we make the product mole fractions α1, . . . , αn variables?
◮ Could we model it differently?

Benôıt Chachuat (McMaster University) LP: Model Formulation 4G03 12 / 25



Formulating “Straightforward” Models for LP

Example: CSTR Reactor

reactants

products

coolant

Reaction system:

{

A + B→ C
B + C→ D

Feed flow rate: Ff

Product flow rates: FA,FB,FC,FD

Material Balances:

FA = αAFf

FB = αBFf

FC = αCFf

FD = αDFf

Remarks:

The α’s are for specific reactions, reactor
temperature, level, mixing pattern, etc.

If A, B, C, D are the only components,

αA + αB + αC + αD = 1

The F ’s are mass units!
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Approximate Models for LP

Besides “straightforward” LP models, certain classes of nonlinear or
multiobjective optimization problems can be reformulated or
approximated as LP models:

Base-Delta Models

Separable Programming

Minimax and Maximin (Linear) Objectives

Goal Programming

These approaches are usually reasonable when the uncertainties in the
problem do not justify further model accuracy — Otherwise, solve the
nonlinear model using NLP!
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Base-Delta LP Models

Goal: Extend “straightforward” LP models to include nonlinear,
secondary decision variables:

0 = f(x, y) ≈ f(x, y◦) +
∂f

∂y

∣

∣

∣

∣

x◦,y◦
(y − y◦)T

◮ The base model, f(x, y◦), describes the (linear) effect of the primary
decision variables, while the secondary variables are kept constant at
their nominal value y = y◦

◮ The delta model provides small corrections for deviations (“deltas”) in
the secondary variables y around (x◦, y◦)

The accuracy of the solution depends on how well the approximation
applies at (x∗, y∗) 6= (x◦, y◦)

To improve the accuracy, the primary and secondary decision variables
should be limited by upper and lower bounds
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Formulating Base-Delta LP Models
Class Exercise: Pyrolysis of n-heptane

1.75

severity
nominal

1 Develop a “straightforward” model that predicts the flow rate of
methane from the reactor

2 Enhance this model by adding a delta due to changes in severity.
Recommend the allowable range for the severity variable

3 Is the material balance closed in the base-delta approach?
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Separable Programming

Consider the following mathematical program:

min
x

z
∆
=

n
∑

j=1

fj(xj ) = f1(x1) + · · ·+ fn(xn)

s.t.

n
∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

◮ The objective consists of n nonlinear, separable terms fj (xj), each a
function of a single variable only — Examples?

◮ The m constraints are linear

When each fj is convex on the feasible region, the separable program
can be approximated with an LP

An analogous situation exists when the objective is to maximize a
separable concave function — Why?
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Approximating Separable Programs as LPs

Piecewise affine approximation:

(Nj intervals)

c2 =
f

(2)
j

−f
(1)
j

x
(2)
j

−x
(1)
j

fj(xj )

f
(0)
j

f
(1)
j

f
(2)
j

f
(3)
j

xj

x
(0)
j x

(1)
j x

(2)
j x

(3)
j

0 ≤ ωj2 ≤ x
(2)
j − x

(1)
j

Define:

c
(k)
j =

f
(k)
j − f

(k−1)
j

x
(k)
j − x

(k−1)
j

0 ≤ ωjk ≤ x
(k)
j − x

(k−1)
j

Substitute each variable xj

and function fj by:

xj ← x
(0)
j +

Nj
∑

k=1

ωjk

fj(xj )← f
(0)
j +

Nj
∑

k=1

c
(k)
j ωjk
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Approximating Separable Programs as LPs (cont’d)

Approximate Linear Program (on Nj Intervals):

min
ω

n
∑

j=1

f
(0)
j +

n
∑

j=1

Nj
∑

k=1

c
(k)
j ωjk

s.t.

n
∑

j=1

Nj
∑

k=1

aijωjk ≤ bi −

n
∑

j=1

aijx
(0)
j , i = 1, . . . ,m

0 ≤ ωjk ≤ x
(k)
j − x

(k−1)
j , j = 1, . . . , n, k = 1, . . . ,Nj

Important Remarks:

Convexity guarantees that the pieces in the solutions will be included
in the right order — This approach does not work if not all functions
are convex!

The solution can be made as accurate as desired by using enough
intervals — One pays the price in terms of increased problem size!
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Minimax and Maximin Problems

Consider the case of multiple, competing linear objectives:

f1(x)
∆
= cT

1 x + d1, . . . , fN(x)
∆
= cT

Nx + dN

Minimax problem: minimize the worst (greatest) objective:

min
x

max{cT
i x + di : i = 1, . . . ,N}

Maximin problem: maximize the worst (least) objective:

max
x

min{cT
i x + di : i = 1, . . . ,N}

Maximin ProblemMinimax Problem

cT
1 x + d1

cT
1 x + d1cT

2 x + d2

cT
2 x + d2

cT
3 x + d3 cT

3 x + d3

xmin xminxmax xmax

x x

max{cT
j x + dj : i = 1, . . . , 3}

min{cT
j x + dj : i = 1, . . . , 3}

f (x) f (x)
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Formulating Minimax Problems

Class Exercise: Two groups of employees in a company are asked to work
on Sundays, depending on the actual plant production x ,

Group 1: f1(x) = 5x Group 2: f2(x) = 3x + 2

The CEO wants to minimize the maximum number of employees working
on Sundays in all groups. Formulate a model for this optimization problem.
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Reformulating Minimax and Maximin Problems

Idea: Introduce a slack variable, along with N inequality constraints

Minimax Problem:

min
x

max{cT
i x + di : i = 1, . . . ,N}

⇓

LP Model:

min
x,z

z

s.t. z ≥ cT
1 x + d1

...

z ≥ cT
Nx + dN

Maximin Problem:

max
x

min{cT
i x + di : i = 1, . . . ,N}

⇓

LP Model:

max
x,z

z

s.t. z ≤ cT
1 x + d1

...

z ≤ cT
Nx + dN

Additional linear constraints can be included in the formulations
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Goal Programming

Consider the case of multiple, competing linear objectives:

f1(x)
∆
= cT

1 x, . . . , fN(x)
∆
= cT

Nx,

and corresponding target levels ℓ1, . . . , ℓN

Find a compromise between the various goals in such a way that
most are to some extent satisfied

◮ Lower One-Sided Goal: Achieve a value of at least ℓk for the kth goal,

fk(x) = cT
k x ≥ ℓk

◮ Upper One-Sided Goal: Achieve a value of at most ℓk for the kth goal,

fk(x) = cT
k x ≤ ℓk

◮ Two-Sided Goal: Achieve a value of exactly ℓk for the kth goal,

fk(x) = cT
k x = ℓk
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Formulating Goal Programming as LP Models

Soft Constraints

Target levels specify requirements that are desirable to satisfy, but which
may be violated in feasible solutions

Idea: Introduce deficiency variables, d±
k , representing the amount by

which the kth goal is over- or under-achieved

◮ Lower One-Sided Goal: cT
k x + d−

k = ℓk , d−

k ≥ 0

◮ Upper One-Sided Goal: cT
k x− d+

k = ℓk , d+
k ≥ 0

◮ Two-Sided Goal: cT
k x + d−

k − d+
k = ℓk , d+

k , d−

k ≥ 0

Fundamental balances (such as material and energy balances) should
never be softened! These must always be strictly observed

Softening constraints may help debugging models in case infeasibility
is reported
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Formulating Goal Programming as LP Models (cont’d)

Non-Preemptive LP Model Formulation: All the goals are
considered simultaneously in the objective function,

min
x,d±

ω
Td±

s.t. cT
k x± d∓

k = ℓk , k = 1, . . . ,N

Ax ≤ b

x ≥ 0, d± ≥ 0

Determining the weights ω is a subjective step... Different weights
often yield very different solutions!

Preemptive LP Model Formulation: The goals are subdivided into
sets, and each set is given a priority

◮ The solution proceeds by solving a sequence of subproblems, from
highest to lowest priority goals

◮ Goals of lower priority are ignored in a given subproblem
◮ Goals of higher priority are enforced as hard equality constraints
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